Written by:
Get up close and personal with your innards with these 15 amazing
3D-body shots. Almost all of the following images were captured using a
scanning electron microscope (SEM), a type of electron microscope that
uses a beam of high-energy electrons to scan surfaces of images. The
electron beam of the SEM interacts with atoms near or at the surface of
the sample to be viewed, resulting in a very high-resolution, 3D-image.
Magnification levels range from x 25 (about the same as a hand lens) to
about x 250,000. Incredible details of 1 to 5 nm in size can be
detected.Max Knoll was the first person to create an SEM image of silicone steel in 1935; over the next 30 years, a number of scientists worked to further develop the instrument, and in 1965 the first SEM was delivered to DuPont by the Cambridge Instrument Company as the "Stereoscan." Here you'll experience the power of SEM in a journey of self-discovery that starts in your head, travels down through the chest and ends in the bowels of the abdomen. Along the way, you'll see what's normal, what happens when cells are twisted by cancer and what it looks like when an egg meets sperm for the first time. You'll never see yourself the same way again.
They look like little cinnamon candies here, but they're actually the
most common type of blood cell in the human body - red blood cells
(RBCs). These biconcave-shaped cells have the tall task of carrying
oxygen to our entire body; in women there are about 4 to 5 million RBCs
per microliter (cubic millimeter) of blood and about 5 to 6 million in
men. People who live at higher altitudes have even more RBCs because of
the low oxygen levels in their environment.
Regular trimmings to your hair and good conditioner should help to
prevent this unsightly picture of a split end of a human hair.
Of the 100 billion neurons in your brain,
Purkinje neurons are some of the largest. Among other things, these
cells are the masters of motor coordination in the cerebellar cortex.
Toxic exposure such as alcohol and lithium, autoimmune diseases, genetic
mutations including autism and neurodegenerative diseases can
negatively affect human Purkinje cells.
Here's what it looks like to see a close-up of human hair cell
stereocilia inside the ear. These detect mechanical movement in response
to sound vibrations.
In this image, stained retinal blood vessels are shown to emerge from
the black-coloured optic disc. The optic disc is a blind spot because no
light receptor cells are present in this area of the retina where the
optic nerve and retinal blood vessels leave the back of the eye.
This colour-enhanced image depicts a taste bud on the tongue. The human
tongue has about 10,000 taste buds that are involved with detecting
salty, sour, bitter, sweet and savoury taste perceptions.
Brush your teeth often because this is what the surface of a tooth with a form of "corn-on-the-cob" plaque looks like.
Remember that picture of the nice, uniform shapes of red blood cells you
just looked at? Well, here's what it looks like when those same cells
get caught up in the sticky web of a blood clot. The cell in the middle
is a white blood cell.
This is what a colour-enhanced image of the inner surface of your lung
looks like. The hollow cavities are alveoli; this is where gas exchange
occurs with the blood.
This image of warped lung cancer cells is in stark contrast to the healthy lung in the previous picture.
Villi in the small intestine increase the surface area of the gut, which
helps in the absorption of food. Look closely and you'll see some food
stuck in one of the crevices.
This image is of a purple, colour-enhanced human egg sitting on a pin.
The egg is coated with the zona pellicuda, a glycoprotein that protects
the egg but also helps to trap and bind sperm. Two coronal cells are
attached to the zona pellicuda.
Here's a close-up of a number of sperm trying to fertilise an egg.
It looks like the world at war, but it's actually five days after the
fertilisation of an egg, with some remaining sperm cells still sticking
around. This fluorescent image was captured using a confocal microscope.
The embryo and sperm cell nuclei are stained purple while sperm tails
are green. The blue areas are gap junctions, which form connections
between the cells.
And the cycle of life begins again: this 6 day old human embryo is
beginning to implant into the endometrium, the lining of the uterus.
Source : http://www.environmentalgraffiti.com
No comments:
Post a Comment